八年級數學《勾股定理》教學反思
身為一名人民老師,我們的任務之一就是教學,寫教學反思能總結我們的教學經驗,如何把教學反思做到重點突出呢?以下是小編收集整理的八年級數學《勾股定理》教學反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
八年級數學《勾股定理》教學反思1對于“勾股定理的應用”的反思和小結有以下幾個方面:
1、課前準備不充分:
基礎題中是一些由正方形和直角三角形拼合而成的圖形(與希臘郵票設計原理相同),其中兩個正方形的面積分別是14和18,求最大的正方形的面積。
分析:由勾股定理結論:直角三角形中兩直角邊的平方和等于斜邊的平方。
其實質即以直角三角形兩直角邊為邊長的兩個正方形面積之和等于以斜邊為邊長的正方形的面積。但學生竟然不知道。其二是課件準備不充分,其中有一道例題的答案是跟著例題同時出現的,再去修改,又浪費了一點時間。其三,用面積法求直角三角形的高,我認為是一個非常簡單的數學問題,但在實際教學中,發(fā)現很多學生仍然很難理解,說明我在備課時備學生不充分,沒有站在學生的角度去考慮問題。
2、課堂上的語言應該簡練。這是我上課的最大弱點,我不敢放手讓學生去獨立思考問題,會去重復題目意思,實際上不需要的,可以留時間讓學生去獨立思考。教師是無法代替學生自己的思考的,更不能代替幾十個有差異的學生的思維。課堂上老師放一放,學生得到的更多,老師放多少,學生就有多大的自主發(fā)展的空間。但這里的“放多少”是一門藝術,我要好好向老教師學習!
3、鼓勵學生的藝術。教師要鼓勵學生嘗試并尊重他們不完善的甚至錯誤的意見,經常鼓勵他們大膽說出自己的想法,大膽發(fā)表自己的見解,真正體現出學生是數學學習的主人。
4、啟發(fā)學生的技巧有待提高。啟發(fā)學生也是一門藝術,我的課堂上有點啟而不發(fā)。課堂上應該多了解學生。
八年級數學《勾股定理》教學反思2義務教育課程標準實驗教材八年級數學(下)《勾股定理》的第一課時,教材的重點是讓學生經歷勾股定理的探索和證明過程,了解勾股定理的背景知識,在學習知識的同時,感受勾股定理的豐富文化內涵,激發(fā)學生的學習興趣,對學生進行思想品德教育。
在講課時,由于沒有認真準備,也沒有讓學生準備學具,所以在上課時,只是讓學生利用書中的圖形來進行探究。對于勾股定理的證明,只是用了四個全等的直角三角形拼了拼,運用同一圖形的不同表示法得出了結論。一節(jié)課,將課堂重點放到了對勾股定理結論的記憶和運用上,淡化了教材對勾股定理的探索和證明過程,結果只有班內少數同學學到了探索和證明方法,教學效果不佳。
這節(jié)課講過沒多久,由于要參加優(yōu)質課比賽,我又認真對這節(jié)課進行了準備。針對教材的任務要求,我對本節(jié)課的教學過程是這樣設計的:
1、欣賞圖片,激發(fā)興趣
通過欣賞20xx年在我國北京召開的國際數學家大會的會徽圖案,引出“趙爽弦圖”,讓學生了解我國古代輝煌的數學成就,引入課題。
接下來,讓學生欣賞傳說故事:相傳2500年前,畢達格拉斯在朋友家做客時,發(fā)現朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數量關系。通過故事使學生明白:科學家的偉大成就多數都是在看似平淡無奇的現象中發(fā)現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。
這樣,一方面激發(fā)學生的求知欲望,另一方面,也對學生進行了學習方法指導和解決問題能力的培養(yǎng)。
2、分析探究,得出猜想
通過對地板圖形中的等腰直角三角形到一般直角三角形中三邊關系的探究,讓同學們體驗由特殊到一般的探究過程,學習這種研究方法。
在這一過程中,學生充分利用學具去嘗試解決,力求讓學生自己探索,先在小組內交流,然后在全班交流,盡量學習更多的方法。
3、拼圖證明,得出定理
先了解趙爽的證明思路,然后讓學生利用學具自己剪拼,并利用圖形進行證明。
由于難度比較大,組織學生開展小組合作學習。教師要巡回輔導,給予學生必要的幫助。
4、反思歸納,總結升華
一是讓學生自己回顧總結本節(jié)的收獲。(當然多數為具體的知識和方法)。二是教師要引導學生學習科學家敏銳的觀察力和勤于思考的作風,不斷提高自己的數學素養(yǎng),適時對大家進行思想教育。
5、練習鞏固
主要練習勾股定理的其它證明方法。
6、作業(yè)設計
請你利用網絡資源,收集有關勾股定理的證明方法來進行學習。寫出有關勾股定理知識的小論文。一個月過去了,我已忘記了這一項特殊的作業(yè),但部分學生卻寫出了出乎意料的小論文。
通過這節(jié)課的兩種不同的上法,以及學生的不同表現與收獲,讓我更深刻地認識到:
(1)新課改理念只有全面滲透到教育教學工作中,與平時工作緊密結合,才能夠促進學生的全面發(fā)展;
(2)教師要充分利用課堂內容為整體課程目標服務,不要僅限于本節(jié)課的知識目標與要求,就知識“教”知識,而要通過知識的學習獲得學習這些知識的方法,同時,還要充分利用課堂對學生進行情感態(tài)度價值觀的教育,真正讓教材成為教育學生的素材,而不是學科教學的全部;
(3)要相信學生的能力,為學生創(chuàng)造自我學習和創(chuàng)造的機會(如布置開放性的學習任務:數學實踐活動、研究學習、寫小論文等)。
我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現教育的本來目標,而且也一定能讓學生“考出”好的成績;不過,這樣教師一定不會輕松。
八年級數學《勾股定理》教學反思3今后的教學中:
(1)立足教材,鉆研教學大綱的要求;試卷中較多題目是根據課本的題目改編而來,從學生的考試情況來看課本的題目掌握不理想,這說明在平時的教學中對書本的重視不夠,過多地追求課外題目的訓練,但忽略學生實實在在地理解課本知識,提高思維能力。課堂上盡量把課堂還給學生,讓學生積極參與到課堂中,多機會給學生展示,表演,講題,把思路和方法講出來,使學生更清淅地理解題目,提升自己對數學的理解。多點讓學生獨立思考,發(fā)現問題,解決問題。
(2)注重培養(yǎng)學生良好的學習習慣。
(3)加強例題示范教學,培養(yǎng)學生解題書寫表達。
(4)多一些數學方法、數學思想的滲透,少一些知識的生搬硬套。
(5)在數學教學過程中,課堂上系統地對數學知識進行整理、歸納、溝通知識間的內在聯系,形成縱向、橫向知識鏈,從知識的聯系和整體上把握基礎知識。
(6)針對學生的兩極分化,加強課外作業(yè)布置的針對性。讓每個學生課外有適合的作業(yè)做,對不同層次的學生布置不同難度的作業(yè),提高課外學習的效率,減輕學生課外作業(yè)的負擔。正確看待學生學習數學的差異,克服兩極分化。數學課堂 ……此處隱藏4300個字……效地解決問題,積累解決問題的經驗,在過程中養(yǎng)成獨立思考、合作交流的學習習慣;通過解決問題增強自信心,激發(fā)學習數學的興趣。
3、通過老師的介紹,體會一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內涵,激發(fā)生的熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感。
教學難點將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積.
本節(jié)課根據學生的認知結構采用“觀察--猜想--歸納--驗證--應用”的教學方法,這一流程體現了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想.另外,我在探索的過程中補充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學生深刻的體會到了,不是所有三角形三邊都有a2+b2=c2的關系,只有直角三角形三邊才存在這種關系,并且實驗很具有直觀性,便于學生理解,而且是在學生的學習疲勞期出現,達到了再次點燃學生學習熱情的目的,一舉多得。
除了探究出勾股定理的內容以外,本節(jié)課還適時地向學生展現勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生愛國熱情,培養(yǎng)學生的民族自豪感和探索創(chuàng)新的精神.練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的成就感,又使學生深刻了解勾股定理的廣泛應用.讓學生總結本堂課的收獲,從內容,到數學思想方法,到獲取知識的途徑等方面.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節(jié)課歸納總結,感悟點滴,使學生將知識系統化,提高學生素質,鍛煉學生的綜合及表達能力.作業(yè)為了達到提高鞏固的目的,期望學生能主動地探求對勾股定理更深入的認識、拓展學生的視野.
八年級數學《勾股定理》教學反思8勾股定理整章書的內容很少,就勾股定理和勾股定理的逆定理,這節(jié)課是勾股定理的第一課時,本節(jié)課主要是和學生一起探究勾股地理的認識。在教學的過程中感覺有幾個方面需要轉變的。
一 、轉變師生角色,讓學生自主學習。由于高效課堂中教學模式需要進行學生自主討論交流學習,在探究勾股定理的發(fā)現時分四人一小組由同學們合作探討作圖,去發(fā)現有的直角三角形的三邊具有這種關系,有的直角三角形不具有這種性質。可仍然證明不了我們的猜想是否正確。之后用拼圖的方法再來驗證一下。讓學生們拿出準備好的直角三角形和正方形,利用拼圖和面積計算來證明 + = (學生分組討論。)學生展示拼圖方法,課件輔助演示。 新課標下要求教師個人素質越來越高,教師自身要不斷及時地學習學科專業(yè)知識,接受新信息,對自己及時充電、更新,而且要具有幽默藝術的語言表達能力。既要有領導者的組織指導能力,更重要的是要有被學生欣賞佩服的魅力,只有學生配合你,信任你,喜歡你,教師才能輕松駕御課堂,做到應付自如,高效率完成教學目標。 “教師教,學生聽,教師問,學生答,教室出題,學生做”的傳統教學摸模式,已嚴重阻阻礙了現代教育的發(fā)展。這種教育模式,不但無法培養(yǎng)學生的實踐能力,而且會造成機械的學習知識,形成懶惰、空洞的學習態(tài)度,形成數學的呆子,就像有的大學畢業(yè)生都不知道1平方米到底有多大?因此,高效課堂上要求老師一定要改變角色,把主動權交給學生,讓學生提出問題,動手操作,小組討論,合作交流,把學生想到的,想說的想法和認識都讓他們盡情地表達,然后教師再進行點評與引導,這樣做會有許多意外的收獲,而且能充分發(fā)揮挖掘每個學生的潛能,久而久之,學生的綜合能力就會與日劇增。
二、轉變教學方式,讓學生探索、研究、體會學習過程。 學生學會了數學知識,卻不會解決與之有關的實際問題,造成了知識學習和知識應用的脫節(jié),感受不到數學與生活的聯系,這是當今課堂教學存在的普遍問題,對于我們這兒的學生起點低、數學基礎差、實踐能力差,對學生的各種能力培養(yǎng)非常不利的。課堂中要特別關注:
1、關注學生是否積極參加探索勾股定理的活動,關注學生能否在活動中積思考,能夠探索出解決問題的方法,能否進行積極的聯想(數形結合)以及學生能否有條理的表達活動過程和所獲得的結論等;
2、關注學生的拼圖過程,鼓勵學生結合自己所拼得的正方形驗證勾股定理。
3、學習的知識性:掌握勾股定理,體會數形結合的思想。
三、提高教學科技含量,充分利用多媒體。 勾股定理知識屬于幾何內容,而幾何圖形可以直觀地表示出來,學生認識圖形的初級階段中主要依靠形象思維。對幾何圖形的認識始于觀察、測量、比較等直觀實驗手段,現代兒童認識幾何圖形亦如此,可以通過直觀實驗了解幾何圖形,發(fā)現其中的規(guī)律。然而,因為幾何圖形本身具有抽象性和一般性,一種幾何概念可能包含無限多種不同的情形,例如有無數種形狀不同的三角形。對一種幾何概念所包含的一部分具體對象進行直觀實驗所得到的認識,一定適合其他情況驗回答不了的問題。因此,一般地,研究圖形的形狀、大小和位置。 培養(yǎng)邏輯推理能力,作了認真的考慮和精心的設計,把推理證明作為學生觀察、實驗、探究得出結論的自然延續(xù)。教科書的幾何部分,要先后經歷“說點兒理”“說理”“簡單推理”幾個層次,有意識地逐步強化關于推理的初步訓練,主要做法是在問題的分析中強調求解過程所依據的道理,體現事出有因、言之有據的思維習慣。 由于信息技術的發(fā)展與普及,直觀實驗手段在教學中日益增加,本節(jié)課利用我們學校建立了電教教室,通過制作課件對于幾何學的學習起到積極作用。
八年級數學《勾股定理》教學反思9根據學生的認知結構與教材地位,為了達到本節(jié)課的教學目標,我設計了以下幾個環(huán)節(jié):
1.創(chuàng)設情境,提出猜想讓學生判斷兩位同學的畫法是否都能得到斜邊為10cm的直角三角形,通過對不同畫法的探究,溫故知新,為用構造全等三角形的方法證明勾股定理的逆定理做好鋪墊.同時,引導學生從特殊到一般提出猜想。
2.證明猜想,得出新知。由于有前一環(huán)節(jié)的鋪墊,通過啟發(fā)、引導、討論,讓學生體會用構造全等三角形的方法證明問題的思想,突破定理證明這一難點,并適時出示課題。
3.應用訓練,鞏固新知為了鞏固新知,靈活運用所學知識解決相應問題,提高學生的分析解題能力,我設計了三個層次的問題,以達到教學目標.第一層次是讓學生直接運用定理判斷三角形是否是直角三角形,掌握定理基本運用;第二層次是強調已知三角形三邊長或三邊關系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應用,又為下一個層次做好了鋪墊;第三層次是靈活運用勾股定理與逆定理解決圖形面積的計算問題.根據學生原有的認知結構,讓學生更好地體會分割的思想.設計的題型前后呼應,使知識有序推進,有助于學生的理解和掌握;讓學生通過合作、交流、反思、感悟的過程,激發(fā)學生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗.真正體現學生是學習的主人.。
4.歸納小結,形成體系讓學生交流學習的收獲、課堂經歷的感受和對數學思想方法的感悟體會等.幫助學生內化新知,優(yōu)化學生的認知結構,形成能力,減輕課后負擔。
5.布置作業(yè),課外延伸分層布置作業(yè),目的是讓不同的學生得到不同層次的發(fā)展
文檔為doc格式